3.2.43 \(\int \frac {a+b \log (c (d+e x)^n)}{(f+g x)^{7/2}} \, dx\) [143]

Optimal. Leaf size=145 \[ \frac {4 b e n}{15 g (e f-d g) (f+g x)^{3/2}}+\frac {4 b e^2 n}{5 g (e f-d g)^2 \sqrt {f+g x}}-\frac {4 b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{5 g (e f-d g)^{5/2}}-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}} \]

[Out]

4/15*b*e*n/g/(-d*g+e*f)/(g*x+f)^(3/2)-4/5*b*e^(5/2)*n*arctanh(e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)^(1/2))/g/(-d*g+
e*f)^(5/2)-2/5*(a+b*ln(c*(e*x+d)^n))/g/(g*x+f)^(5/2)+4/5*b*e^2*n/g/(-d*g+e*f)^2/(g*x+f)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2442, 53, 65, 214} \begin {gather*} -\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}-\frac {4 b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{5 g (e f-d g)^{5/2}}+\frac {4 b e^2 n}{5 g \sqrt {f+g x} (e f-d g)^2}+\frac {4 b e n}{15 g (f+g x)^{3/2} (e f-d g)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e*x)^n])/(f + g*x)^(7/2),x]

[Out]

(4*b*e*n)/(15*g*(e*f - d*g)*(f + g*x)^(3/2)) + (4*b*e^2*n)/(5*g*(e*f - d*g)^2*Sqrt[f + g*x]) - (4*b*e^(5/2)*n*
ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]])/(5*g*(e*f - d*g)^(5/2)) - (2*(a + b*Log[c*(d + e*x)^n]))/(5*
g*(f + g*x)^(5/2))

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rubi steps

\begin {align*} \int \frac {a+b \log \left (c (d+e x)^n\right )}{(f+g x)^{7/2}} \, dx &=-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}+\frac {(2 b e n) \int \frac {1}{(d+e x) (f+g x)^{5/2}} \, dx}{5 g}\\ &=\frac {4 b e n}{15 g (e f-d g) (f+g x)^{3/2}}-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}+\frac {\left (2 b e^2 n\right ) \int \frac {1}{(d+e x) (f+g x)^{3/2}} \, dx}{5 g (e f-d g)}\\ &=\frac {4 b e n}{15 g (e f-d g) (f+g x)^{3/2}}+\frac {4 b e^2 n}{5 g (e f-d g)^2 \sqrt {f+g x}}-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}+\frac {\left (2 b e^3 n\right ) \int \frac {1}{(d+e x) \sqrt {f+g x}} \, dx}{5 g (e f-d g)^2}\\ &=\frac {4 b e n}{15 g (e f-d g) (f+g x)^{3/2}}+\frac {4 b e^2 n}{5 g (e f-d g)^2 \sqrt {f+g x}}-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}+\frac {\left (4 b e^3 n\right ) \text {Subst}\left (\int \frac {1}{d-\frac {e f}{g}+\frac {e x^2}{g}} \, dx,x,\sqrt {f+g x}\right )}{5 g^2 (e f-d g)^2}\\ &=\frac {4 b e n}{15 g (e f-d g) (f+g x)^{3/2}}+\frac {4 b e^2 n}{5 g (e f-d g)^2 \sqrt {f+g x}}-\frac {4 b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{5 g (e f-d g)^{5/2}}-\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{5 g (f+g x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.03, size = 78, normalized size = 0.54 \begin {gather*} \frac {2 \left (\frac {2 b e n (f+g x) \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};\frac {e (f+g x)}{e f-d g}\right )}{e f-d g}-3 \left (a+b \log \left (c (d+e x)^n\right )\right )\right )}{15 g (f+g x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*(d + e*x)^n])/(f + g*x)^(7/2),x]

[Out]

(2*((2*b*e*n*(f + g*x)*Hypergeometric2F1[-3/2, 1, -1/2, (e*(f + g*x))/(e*f - d*g)])/(e*f - d*g) - 3*(a + b*Log
[c*(d + e*x)^n])))/(15*g*(f + g*x)^(5/2))

________________________________________________________________________________________

Maple [F]
time = 0.18, size = 0, normalized size = 0.00 \[\int \frac {a +b \ln \left (c \left (e x +d \right )^{n}\right )}{\left (g x +f \right )^{\frac {7}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(e*x+d)^n))/(g*x+f)^(7/2),x)

[Out]

int((a+b*ln(c*(e*x+d)^n))/(g*x+f)^(7/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(g*x+f)^(7/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*%e^2*f-4*%e*d*g>0)', see `as
sume?` for m

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 350 vs. \(2 (124) = 248\).
time = 0.38, size = 745, normalized size = 5.14 \begin {gather*} \left [\frac {2 \, {\left (3 \, {\left (b g^{3} n x^{3} + 3 \, b f g^{2} n x^{2} + 3 \, b f^{2} g n x + b f^{3} n\right )} \sqrt {-\frac {e}{d g - f e}} e^{2} \log \left (-\frac {d g - 2 \, {\left (d g - f e\right )} \sqrt {g x + f} \sqrt {-\frac {e}{d g - f e}} - {\left (g x + 2 \, f\right )} e}{x e + d}\right ) - {\left (3 \, a d^{2} g^{2} - {\left (6 \, b g^{2} n x^{2} + 14 \, b f g n x + 8 \, b f^{2} n - 3 \, a f^{2}\right )} e^{2} + 2 \, {\left (b d g^{2} n x + b d f g n - 3 \, a d f g\right )} e + 3 \, {\left (b d^{2} g^{2} n - 2 \, b d f g n e + b f^{2} n e^{2}\right )} \log \left (x e + d\right ) + 3 \, {\left (b d^{2} g^{2} - 2 \, b d f g e + b f^{2} e^{2}\right )} \log \left (c\right )\right )} \sqrt {g x + f}\right )}}{15 \, {\left (d^{2} g^{6} x^{3} + 3 \, d^{2} f g^{5} x^{2} + 3 \, d^{2} f^{2} g^{4} x + d^{2} f^{3} g^{3} + {\left (f^{2} g^{4} x^{3} + 3 \, f^{3} g^{3} x^{2} + 3 \, f^{4} g^{2} x + f^{5} g\right )} e^{2} - 2 \, {\left (d f g^{5} x^{3} + 3 \, d f^{2} g^{4} x^{2} + 3 \, d f^{3} g^{3} x + d f^{4} g^{2}\right )} e\right )}}, \frac {2 \, {\left (\frac {6 \, {\left (b g^{3} n x^{3} + 3 \, b f g^{2} n x^{2} + 3 \, b f^{2} g n x + b f^{3} n\right )} \arctan \left (-\frac {\sqrt {d g - f e} e^{\left (-\frac {1}{2}\right )}}{\sqrt {g x + f}}\right ) e^{\frac {5}{2}}}{\sqrt {d g - f e}} - {\left (3 \, a d^{2} g^{2} - {\left (6 \, b g^{2} n x^{2} + 14 \, b f g n x + 8 \, b f^{2} n - 3 \, a f^{2}\right )} e^{2} + 2 \, {\left (b d g^{2} n x + b d f g n - 3 \, a d f g\right )} e + 3 \, {\left (b d^{2} g^{2} n - 2 \, b d f g n e + b f^{2} n e^{2}\right )} \log \left (x e + d\right ) + 3 \, {\left (b d^{2} g^{2} - 2 \, b d f g e + b f^{2} e^{2}\right )} \log \left (c\right )\right )} \sqrt {g x + f}\right )}}{15 \, {\left (d^{2} g^{6} x^{3} + 3 \, d^{2} f g^{5} x^{2} + 3 \, d^{2} f^{2} g^{4} x + d^{2} f^{3} g^{3} + {\left (f^{2} g^{4} x^{3} + 3 \, f^{3} g^{3} x^{2} + 3 \, f^{4} g^{2} x + f^{5} g\right )} e^{2} - 2 \, {\left (d f g^{5} x^{3} + 3 \, d f^{2} g^{4} x^{2} + 3 \, d f^{3} g^{3} x + d f^{4} g^{2}\right )} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(g*x+f)^(7/2),x, algorithm="fricas")

[Out]

[2/15*(3*(b*g^3*n*x^3 + 3*b*f*g^2*n*x^2 + 3*b*f^2*g*n*x + b*f^3*n)*sqrt(-e/(d*g - f*e))*e^2*log(-(d*g - 2*(d*g
 - f*e)*sqrt(g*x + f)*sqrt(-e/(d*g - f*e)) - (g*x + 2*f)*e)/(x*e + d)) - (3*a*d^2*g^2 - (6*b*g^2*n*x^2 + 14*b*
f*g*n*x + 8*b*f^2*n - 3*a*f^2)*e^2 + 2*(b*d*g^2*n*x + b*d*f*g*n - 3*a*d*f*g)*e + 3*(b*d^2*g^2*n - 2*b*d*f*g*n*
e + b*f^2*n*e^2)*log(x*e + d) + 3*(b*d^2*g^2 - 2*b*d*f*g*e + b*f^2*e^2)*log(c))*sqrt(g*x + f))/(d^2*g^6*x^3 +
3*d^2*f*g^5*x^2 + 3*d^2*f^2*g^4*x + d^2*f^3*g^3 + (f^2*g^4*x^3 + 3*f^3*g^3*x^2 + 3*f^4*g^2*x + f^5*g)*e^2 - 2*
(d*f*g^5*x^3 + 3*d*f^2*g^4*x^2 + 3*d*f^3*g^3*x + d*f^4*g^2)*e), 2/15*(6*(b*g^3*n*x^3 + 3*b*f*g^2*n*x^2 + 3*b*f
^2*g*n*x + b*f^3*n)*arctan(-sqrt(d*g - f*e)*e^(-1/2)/sqrt(g*x + f))*e^(5/2)/sqrt(d*g - f*e) - (3*a*d^2*g^2 - (
6*b*g^2*n*x^2 + 14*b*f*g*n*x + 8*b*f^2*n - 3*a*f^2)*e^2 + 2*(b*d*g^2*n*x + b*d*f*g*n - 3*a*d*f*g)*e + 3*(b*d^2
*g^2*n - 2*b*d*f*g*n*e + b*f^2*n*e^2)*log(x*e + d) + 3*(b*d^2*g^2 - 2*b*d*f*g*e + b*f^2*e^2)*log(c))*sqrt(g*x
+ f))/(d^2*g^6*x^3 + 3*d^2*f*g^5*x^2 + 3*d^2*f^2*g^4*x + d^2*f^3*g^3 + (f^2*g^4*x^3 + 3*f^3*g^3*x^2 + 3*f^4*g^
2*x + f^5*g)*e^2 - 2*(d*f*g^5*x^3 + 3*d*f^2*g^4*x^2 + 3*d*f^3*g^3*x + d*f^4*g^2)*e)]

________________________________________________________________________________________

Sympy [A]
time = 123.27, size = 141, normalized size = 0.97 \begin {gather*} \frac {- \frac {2 a}{5 \left (f + g x\right )^{\frac {5}{2}}} + 2 b \left (\frac {2 e n \left (\frac {e g}{\sqrt {f + g x} \left (d g - e f\right )^{2}} + \frac {e g \operatorname {atan}{\left (\frac {\sqrt {f + g x}}{\sqrt {\frac {d g - e f}{e}}} \right )}}{\sqrt {\frac {d g - e f}{e}} \left (d g - e f\right )^{2}} - \frac {g}{3 \left (f + g x\right )^{\frac {3}{2}} \left (d g - e f\right )}\right )}{5 g} - \frac {\log {\left (c \left (d - \frac {e f}{g} + \frac {e \left (f + g x\right )}{g}\right )^{n} \right )}}{5 \left (f + g x\right )^{\frac {5}{2}}}\right )}{g} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(e*x+d)**n))/(g*x+f)**(7/2),x)

[Out]

(-2*a/(5*(f + g*x)**(5/2)) + 2*b*(2*e*n*(e*g/(sqrt(f + g*x)*(d*g - e*f)**2) + e*g*atan(sqrt(f + g*x)/sqrt((d*g
 - e*f)/e))/(sqrt((d*g - e*f)/e)*(d*g - e*f)**2) - g/(3*(f + g*x)**(3/2)*(d*g - e*f)))/(5*g) - log(c*(d - e*f/
g + e*(f + g*x)/g)**n)/(5*(f + g*x)**(5/2))))/g

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(g*x+f)^(7/2),x, algorithm="giac")

[Out]

integrate((b*log((x*e + d)^n*c) + a)/(g*x + f)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )}{{\left (f+g\,x\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e*x)^n))/(f + g*x)^(7/2),x)

[Out]

int((a + b*log(c*(d + e*x)^n))/(f + g*x)^(7/2), x)

________________________________________________________________________________________